322

WA . \"4 sz
L. A A

1
H
+

Fig. 10. Characteristic longitudinal section F of the bandpass
filter developed.

coupled waveguide filter. At this example, it turned out
that it was not possible to influence the eigenvalues of the
same order for the open- and short-circuit case inde-
pendently of one another. Therefore, they were influenced
alternately.

The structure shown in Fig. 10 was analyzed by means
of a stepped waveguide using formulas given in [67]. The
location of the passbands was in very good agreement with
the required values.

In the same way as just deseribed, low passes and high
passes were synthesized. \

IV. ConNcLUsION

A general principle for synthesizing nonuniform wave-
guides with desired properties was described. The method
is an iterative one. The application of the method was de-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1974

seribed for one kind of nonuniform waveguide with
rectangular cross section and excited by a TE, mode.
Simple examples have proved the feasibility of the method.
Some experience for a successful adaptation of the method
were given. In general, the method can be adapted to more
complicated problems, e.g., matching problems. A cor-
responding computer program is under test.
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Short Papers

Tabulation of Methods for the Numerical Solution of the
Hollow Waveguide Problem

FOOK LOY NG

Abstract—A comparison of methods for the numerical solution
of the hollow waveguide problem is presented in tabular form.
Another table lists waveguide shapes and their cutoff characteristics
that have been presented in the literature. These tables and the
bibliograppy afford an aid towards the selection of a method.

INTRODUCTION

Consider a uniform waveguide with perfectly conducting walls.
For the propagation of monochromatic electromagnetic waves in-
side the waveguide, Maxwell’s equations reduce to the two-dimen-
sional Helmholtz equation (1, sect. 8.17].

All analyses of the hollow waveguide problem are attempts at
solving, exactly or approximately, the Helmholtz equation subject
to the imposed Dirichlet or Neumann boundary conditions for
E modes (TM) or H modes (TE), respectively [1, ch. 87.
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Many numerical methods have been proposed and used for the
solution of the waveguide problem. A commentary on and com-
parison of the methods together with relevant references are given in
this short paper. A table of the methods and their chief characteristics
are presented for convenient reference. Another table is given listing
the waveguide shapes that have been treated in the litérature. This
ig provided as a handy reference of shapes that can be used for the
testing of any numerical method. This short paper is a condensed
version of an earlier publication appearing in a journal with limited
circulation [2].

A general introduction to numerical techniques and a review of
finite difference and variational techniques for electromagnetic
problems are given by Wexler [3]. A review of some current numer-
ical methods for the solution of the waveguide problem is given by
Davies [47], and he establishes certain criteria as a basis for com-
parison of the various methods.

CoMPARISON OF METHODS

Waveguide shapes can be classified [5] into the three basie types
ghown in Fig. 1.

In general, type 3 is the most troublesome computationally
because of the singular behavior of the field at the reentrant corners
[6, sect. 9.2]. Most of the methods either suffer from a slower
convergence rate or do not produce reliable results for this type of
shape.

The methods that have been used are compared in Table I.
Some criteria established by Davies [4] for the comparison of
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Fig. 1.

Type 1.

Type 2.

Type 3.

Classification of waveguide shapes. Type 1-—convex. Type 2—

nonconvex, with smooth reentrant part(s). Type 3—nonconvex, with
reentrant corners.

TABLE 1
Comparison oF METHODS FOR THE NUMERICAL SoLuTION OF THE HoLLOW WAVEGUIDE PROBLEM®
Properties of
Matrix/
determinant Computer Program
Cr - ?
020557 3| ana onders | propean/ |Stoage deymptotac
Method Reference shapes needed for k|solution for{Require-|CPU time . % th Remarks
(seepFlg. accurate to |wavenumber,| ments ra :rgor €
1) 0.1% for k (8-byte
appropriate words)
shapes
Variational|Bulley General, |Dense, Order|Versatile. [70 20-70 Not well Types 2 and 3
Rayleigh- [23] except 30-40 Prog. EHPOL|Kbytes secs defined slower conver-
Ritz Bulley type 3 mentioned (IBM with poly- {gence. Good
and Davies|cannot be in referencel 260/50) |nomial for curved type
[5] handled Standard order 1 shapes.
for E elgenvalue Similar method
modes matrix by Thomas [24).
problem and Valenzuela 03 .
Finite- Silvester|General |Dense, block|Versatile. |about 40 M_ED, M = |Types 2 and 3
element [Zﬂ [271 diagonatl. Progs. 200 secs matrix size [slower conver-—
[ Order 3%0-100|documented: |Kbytes D = order gence. D =1
See also Silvester (IBM of polynom-|in the simple
23 , 7094 1al finite-element
[24], [29J Konrad and method
S11‘.Ee]ster (S1lvester
30] . 31]).
Standard [ ])
eigenvalue
mabrix
problem
Finite- Beaubien |General [Sparse, |Versatile. Prog.]|140-220 {8 mins/ Abou§2h—’I See alsg Ponte-
difference |and large documented: Kbytes mode to h ©, h ={pidan [34]
(PDSOR ) Wexler matrix. |(Beaubien and (IBM mesh size |for mmr=lternat
[32] Order Wexler [33)). 260/65) 1ve algorithm.
5000 - Eigenvalue An earlier five-
20000 matrix problem. point finite-
Estimate of k difference
required to scheme (Davies
start iteration and_Muilwyk ' >
dso 39 gives kg
only the lowest
order modes.
Integral Spielman |General Dense, Versatile,zeros|Not Hot - A moment method
operator and Order of determinant 1iven given 1 ington
formulation| Harring- 10-30 give values of probab-|but [3 ) with
ton Eﬂ k, search v stated triangle
routine requred|around as funections is
See atso 100 K "sukstan- used. Field
57] bytes) tial” values close to
waveguide wall
are computed
less accurately.
Null field Bates [39] General Dense, Versatile,zeros|70 K 25 secs |about M"IZ,
method (NFM) ? Order of determinant |bytes per ev- |{M = order A
8-12 give values of aluation jof determin+representation
Ng and k, search of det- |ant for the surface
Bates [40], routine required erminant current density
(10-15 satisfying the
See also (_7-1 required requirements of
per the corner 1s
mode) needed for a

type 3 shape. A
representation
by pulses gives
the CPM.
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TABLE 1 (Continued)

Straight- Not uni- |Dense, Versatile,zerosi13 K 1.5 secsiM 1> or Not always valad
forward Yee and versally |order of determinant |bytes per ev- better for Types 2 and
point- Audeh applic— 8-12 give values of aluation (beforg % shapes. See
matehing [1,1_]_[1,,2] . lable, Sec k, search of det- {levelling [47], @1 , [8]
method ’ ! 3-46) routine erminant |off) for
(SPM) Bates [39] {# ’ required (10-15 jappropriate
[] required|shapes.
8 per Oscillates
mode) with inc-
reasing M
when the
method is
not valid.
nded N, Extends |As for Depends on 16 K 2.% secs|As for SPM [Produces
?;ti;;tc-le & U 7“ usefulness| SPM detailed shape |bytes per ev- accurate gesults
matching Bates and | ¢ sPM of C (the rest aluation for Type 2 and 3
method Ng,, (8], ag for SFM) (the shapes, 1f
(EPM) rest as suitable repres-
for SPM) entations can be
found.
General As for |As for SFM As for |As for |[As for SPM,|Errors may be
ggﬁkte Bates [39], SPM SPM SPM Generally large (10-20%)
matching ! oscillates |for types 2 and
method Ngﬂ]. for inc- 3 shapes.
(CPM) reasing M
for types 2
and 3 shapes.
1 Meinke & |Best Dense, Versatile. - 12 mins/ - For shapes requir-
- g:‘gﬁ:;‘g:- Baier suited to{order Eigenvalue mode ing complicated
mation [4#8] shapes 80-90 matrix (TR4) for mapping functions

Meinké et |for which{for problem. a com— or for higher

al. {491. |simple accurac— plete order modes, the

transfor-|{ies to calcul- large number of

See alse  |pation % ation terms which have

{50-52] functions (includ- to be taken into

" lcan be ing the account causes a
found field) fall in accuracy.
Perturbat- |Uptain & [Limited |Dense Each waveguide - - - See alsg Py%e _
ion (geo- Audeh shapes becomes a jis) or trans
metrical [531, separate prob- ver}sledreggnance
approxim- |[Pyle and lem. See geilg 82 el
ation) Angley indivaidual o | ins $ yl

I54), Hu references. ‘[}z] ;nd efs:rov

and {55] partial Tegions

2—“ 111 method .

N m -gr;sl. -

Har — |General Dense Versatile,zeros - - - onvergence
ggggted todEB 5 of determinant should be better
order sec. 8.5] give values of than ad§§§ond a1
operators |{(see also k order di e}c-}elnd

Davies operator metho

{41 but the matrix
size will be
larger (Davies [4])
Transmission | Johns [57] | General Matrix Versatile, 25 Fairly Method is equivalent
~line order solution by kbytes {excessive - to transverse reso-
matrix of 10-50 |iteration of as 200-500 nance method but
method required |transmission-line iterations divides the waveguide
to store (matrix equations. are required into mary rectangular
node transmission line
values. sections. Curved
boundaries reguire
smaller meshes and
more storuge.
Errors of 0.2-0.5%
typical.

a The properties of the Vmatrix (column 4) and Of'U time (column 7) quoted are those required to give results ac-

curate to 0.1 percent in general, unless otherwise stated. All the methods, except for an earlier finite-difference
scheme, are capable of predicting the higher order modes in addition to the first E and H modes.

methods are incorporated into the table. The storage requirements
quoted are for programs with 8byte (64-bit) words.

There is, of course, no best method, but the variational, finite
element, finite difference, integral operator, null field, conformal
transformation, and transmission-line matrix methods are of wide
applicability and can be used with all three types of shapes, with
suitable modifications where necessary for a type-3 shape.

Point matching methods are attractively ‘economic from the
points of view of programming effort and computer time, but they
often lose their effectiveness with complicated shapes [7], [8]. The
extended point matching method can produce accurate results,
however, for shapes that are strongly nonconvex [87.

The perturbation technique and other methods not listed in
Table I, including the network impedance analog [97, transverse
resonance [107, [117], and partial regions {127, [13] methods, are
not of general applicability and lend themselves to particular classes

of shapes only. Another technique, the Monte Carlo method, can
be used to solve the Helmholtz equation [147, [157, but the method
requires excessive computing time in the simulation of a sufficient
number of random walks. Its attractive feature is the small com-
puter storage required.

Analog/hybrid computation techniques may be employed, al-
though these methods are still new [3]. A discussion of analog
techniques for partial differential equations is given by Fifer [167].

Mention should be made of the classical method of separation of
variables (an analytical method), which can be used when the
cross section of a waveguide coincides with coordinate surfaces of a
separable coordinate system [171-[20].

No comprehensive comparison of the methods on a single com-
puter is available at present, and different machines have been used
in the various methods listed in Table I. A useful comparison of the
characteristies of digital computers can be found in [217].
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TABLE II

WAVEGUIDE SHAPES

Dimensions

cutoff wavenumber
ka, of lowest

order mode given in
reference

H mode | E-mode

Reference

Method used in
Reference

a b = a/2 Standard shape e.g. Separation of
Rectangle b 3.1416 7.0248 11 ,[55] Variables
b=0.55a, ¢=0.225a | Bulley and Davies Variational
b
4.215 Bl Rayleigh-Ritz
Truncated A‘
Square v
b/a=0.25, Uptain and Audeh Transverse
b ° ° 5 {531 . See also
. g = 0°(107)60". Audeh & Fuller resonance
Trapezoid A7 [59] , Vegglov &
Table of ka Flatonov [13,
a values Chopra & Durvasula
16017, 1611
<
Square a o/a =0 to 1/2 Lagasse and Van Bladel Finite element
with [621
rounded P— a Graph of ka values
corner
No ka listed. Bulley [23] Variational
"Rounded" Field plots given. Rayleigh-Ritz
Rectangle
2 ~ -
Rectangle b/a = 0 o 1.0. Valenzuela 23] Variational
with Semi- H-mode. Graph See also [62] Rayleigh-Ritz
circular
sides of ka values :
4.819 Reid and Walsh Finite-
- a [63]1 . See also X
L-shape . /2 Davies and Nagen— difference
thiram [47]
b/a=s/a=3/b=1/2.
2.2566 12,76 Spielman and . - Integral Operator
a Harrington E‘fﬂ.
d 2.412 12.1416 Beaubien d Finite-difference
S b Wexler {32], PDSOR
- 2.2627 Bulley and Davies 3, | Variational
Single v [5] Rayleigh-Ratz
Ridge 2.250 12.1%4 Ns ‘tﬂ_ , Bates and Extended point-
. [] matching
Ng (8
b/a = 0.45;
8/8§S/a‘;2ﬁ82(2f‘05) Pyle [1]] M Transverse
ka values. resonance
a a=0.5,b=0.4, s= | Montgomery l64] . Ritz-Galerkin
Ridge, 0.1,c =0.055,¢e = .
with s 0.0é, 0.13, 8.7, See also Beaubien
unequal bl d_-—--+- a/b = 0.225 %o and Wexler [65]
ridge 0.225.
depths H-mode. Graph
of ka values.
—a b/a = 0.75, Meinke et al.[#9], | Conformal
Rectangle, s/a = d/a = 0.15, transforunation
with trap- C c/a = 0.2
ezoidal s b
ridges d 2.53% 7.61

TaBLE oF WAVEGUIDE SHAPES

Many waveguide shapes are used in the literature as examples for
solutions of the waveguide problem. These range from the simple
trapezoid to the exotic club shape of Davies and Muilwyk [22].

325

Recently, attention has been focused on the challenging and
practical ridge waveguide (a type-3 shape).

Beecause of the profusion of shapes that have been used at one
time or another it is felt that Table II, which lists these shapes, will
prove useful for anyone wishing to check a new method. Also, the
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TABLE I1
(Continued)
! a/b=1.29, 4/b=0.3
2.267 Bulley and Davies [5]~ Variational
i Rayleigh-Ritz
Me:.l.nke d b 2.268 Extended point-
guide . Ng [7], Bates and Ng [8] | matching
——
a b/a = 0.775, Meinke and Baier Conformal
s/a = 0 to 1.0 1481 transformation
Graph of ka values T
a b/a=0.25 (0.25) |Silvester [26] Finite-element
Vaned d b d/a=0 %o 0.8.
. Graph of ka values
rectangle
b/a = 4w, Beauybien and Wexler [ Finite-
T_septate a d/a=0.26, bd . difference PDSOR
d W/a=0.311/2.744 See also Silvester
rectangle W b
2.9682 |8.1181 {26,
2a = 0.125,0.250, Audeh and Fuller (Extended) point—
Square a 0.375 [59] matching
outer, 3 d/(a=b) =0 to 1.0 -
eccentric @ Graphs of ka values
circular
inner
n;iidggal n=4,5,6,7 and 8 Laura et al. [50] Conformal
gutzg ca- r/a = 0 to 1.0 transformation
axial Lowest order E
cireular ' mode. Graphs of
s ka values
inner.
a b/a=0.8,24/b=0.6 | Gruner [667. Partial regions
Coaxial H s/a = 0 to 1.0
rectangles E:d b Graph of ka values
) 4n/3 2na/h Schelkunoff [17] , | Analytic
Eg:ilat— sec. 10.81. See solution
triangle also Thomas Ral -
3
4.n3 9.96 Schelkunotf U7, | Analytic
izgls]:fles a sec. 10.8] and Morse | solution
angled and Feshbach [67,
triangle .7561
Regular pentagon 2.285 Laura [68] Conformal
Regular hexagon 2.317 " " transformation
Regular heptagon 5.5%9 " " " "
Regular octagon 2.355 " " n n
Hexagon b/a = 0.9, Meinke and Baier [48] Conformal
E d/p = 1.0 to 1.15 transformation
Graph of ka values
e d
e/a = 0 %o 5.0, Schlosser [69] Transverse
for several values resonance
2 of cross-sectional
area. Grigh of ka
valies
Dimensions not Thomas [21;[ Variational
given, see figure Galerkin's
Star in reference
shaped X = 4.087
‘1.8412 | 2.4048 | Standard shape e.g. | Separation of
Circle 1] variables
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TABLE 1I
(Continued)
n=_mn/2 . Separation of
3.0542 I 5.1356 NS {7l s variables
Sector 0 = F/2 see also Ng and
I TTEVSE Bates [407.
n-= 575/27 T_B]
tes and .
"Rounded" A b/a = 0.35 Bate N8 Null field method
sector N, 3.2015
d/a = O to 0.3 Pyle and Angley [5+l. Perturbation and
PN transverse
Truncated s i E mode. Graph of See also Sinnott
circle ka values. [70] and Schlosser resonance
fe91.
n=n/2, b/a=0,2
[5-2278 ng [, Separation of
variables
Segment w-35/2, bla=0.3] >detes and Ng Bl
4, 5457
b/a = 0.25, 0.5; Yee and sudeh [42 ], (Extended) point-
e/b = 0 to 3.0 matching
Circular ‘ Graphs of ka values
outer
eccen%ric ad b/a = 0.434, Abaka and Baier Conformal
cirecular w c¢/d = 0.1 to 1.0 V[52] . Bee also transformation
inner eselov and Semenov
Graphs of ka values (717. and Dwight
(7213,
a=1%, b="7.435, Begubien and Wexler | Finite-difference
c=1.0, 8d="1.4% ¥ 32 « See also PDSOR
Lunar ginke and Baier
shape 0.990 4.605 (48], Hu and
Ishimaru (551
Arlett et al-[zs]
as=34, a=3.74, Meinke et al. [4#9], | Conformal
Inverted e=38.9 See also Meinke and transforaation
lunar 0.770 Baier [481.
: b/a = 0 to 1.0 Veselov and Gaydar
Circle
with ’ Graph of ka values [73]. Partial regions
central
cross
a=13%, b=6.875, Beaubien and Wexler |Finite-difference
a ¢ =1.125, d=0.5,o 32} . See also Hu PDOSR
T-septate e=3%.%375, 8=22,5" |Wang (741 , Arlett
circle [3 0.517 #.903 et al.: &8] .
9 d
Jdie
2 2. figl ‘
(x/a)c + (y/b)“ =1, | Krestzschmar . Separation of
-1 2/ See also Rayevskiy varigbles
. e = - a . and Smorgonskiy
Ellipse ; e = 0.0 to 1.0. 751, Davies and
E and H modes. Kretzschmar [56],
Graphs of ka values] Larsen [561.
oY n
. (x/2)" + (3/p)" =1
= 0. 1. L {581,176 1. Finite-difference
i’iper' z/a . 203::0 O,‘ arsen »
ellipse “ = .
H-mode. Graph
of ka values.
see reference Horiuchi et al. (20} Separation of
and = variables
Parabolic Zagrodzaiask: [19] .
Al.e 1581 .
R ‘ p =1+ D cos 4g, Conformal
iStart 40~ b =0 to 0.3 Laura (777, transformation
shape " H mode. Graph of
ka values
See reference Davies and Muilwyk L .
Club B2 . Finite-difference
shape 3.32
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information contained in Table II is fairly comprehensive and is
worth presenting for its own sake.
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Numerical Solution of Surface Waveguide Modes Using
Transverse Field Components

C. G. WILLIAMS anp G. K. CAMBRELL

Abstract—The computation of surface waveguide modes is fa-
cilitated by reducing the surface waveguide field problem to a
conventional eigenvalue problem that has no spurious solutions.
This is achieved by formulating the field problem in terms of trans-
verse field components and by using impedance boundary conditions
on an auxiliary boundary with a specified value of the exterior cutoff
wavenumber.

INTRODUCTION

In many field problems of practical interest, the region being con-
sidered is of infinite extent. A numerical method [17-[37] which
combines integral and differential equation approaches is found to be
effective in increasing computational efficiency and accuracy. A
further application of the method is described here, namely, the
computation of surface waveguide modes. When formulated in terms
of transverse field components, this is a two-dimensional exterior
eigenvalue problem.

SeLECTION OF FikLD COMPONENTS

A surface waveguide is essentially an inhomogeneous waveguide
without a closed boundary. The wave equation describing the
propagation in an inhomogeneous waveguide can be expressed in
terms of two field components, which are usually taken to be the
longitudinal components, E, and H.. (A field dependence of
exp [ j(wt — Bz) ] is assumed throughout.) However, as pointed out
by Gelder [4], this choice leads to a generalized eigenvalue problem
which, for a specified angular frequency w, is nonlinear in the eigen-
value g2 If the phase velocity /g is specified instead, a conventional
problem with eigenvalue ? is obtained, but the solutions include
spurious nonsurface modes. This is because the exterior field of a
surface mode decays exponentially corresponding to an imaginary
exterior cutoff wavenumber k4, that is, k4* = k? — 82 = o?ueo — B2
is negative for a surface mode, whereas the specification of w/8 is
msufficient to determine k42 On the other hand, for a specified value
of k42 use of the transverse components [4], E, and E,, or H, and H,,
leads to a conventional eigenvalue problem with eigenvalue «? which
has no spurious solutions.

ProsrLEM FoRMULATION

The cross section of a typical surface waveguide is shown in Fig. 1.
The rectangular dielectric rod (permittivity e) is enclosed within an
auxiliary boundary C which divides all space into an interior region B
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Fig. 1. Cross section of a rectangular dielectric rod surface waveguide.

and a homogeneous exterior region R,4. The transverse magnetic
field satisfies the differential equation [5]

Vt [']; Vt' (uH{)} i EVg X l:l (V: X H()i| = (ﬁg -— wgﬂéth. (1)
I €

Assuming uniform permeability ug, 1t Is convenient to rearrange (1)
into the following component form:

1 9e [OH, oH, \
— (V& +EkHH, ——— | — — = wlule — e)H, (2)

e 0y \ Jdy ox

10e foH IH,
— (Ve + kH, = ( : ) = wuo(e — e)H, (3)

€ O \ dz oy

which reduces to

— (V2 +EkHH =0 (4)

in the homogeneous exterior region 4. Although (1) is not self-
adjoint, it can be solved in R by such conventional techniques as the
method of moments [6]. For example, projecting both sides of (2)
and (3) onto the space spanned by a set of testing functions W, (z,y)

yields
// [oW, oH. L W ol
A LHI
690 o ay 9y
1 oH, 6H
Lo ( > 4 — f w, 2
e Yy
= w2// I‘O(e - eO)W/zflz da (5)
R
. 0H, 6 ,aH
//’ {aW 3 W.oH, kA,
dxr ox dy oy

1 H, H, 8H
——ﬁW, 0H. _ o, dAl_fIVL——y(ls
e Ox dy ax c an

= w2// (e —e)W.H, dd @
R

where n is the outward normal. In addition, the transverse field com-
ponents must also satisfy (4) in the homogeneous exterior region 4.
Hence the trial values of the transverse field H; and its outward
derivative dH,/on on the auxiliary boundary cannot be inde-
pendent. The compatibility condition which links them is found by
applyving Green’s theorem to (4) to yield the integral equation

1
Hy(r) = ;ﬁ{Htc(m) iKg(k |r—nl|)

i oH
—Kik|r—r])

< (ro)J» dsy (7)

where k = (—ks2)¥2, Kok |1 — 10|) 15 a modified Bessel function
[ Green’s function for (4)7, 8 is the exterior angle in radians between
the tangents on each side of the point 7 on C, and it is understood that



