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Fig. 10. Characteristic longitudinal section F of the bandpass
filter developed.

coupled waveguide filter. At this example, it turned out

that it was not possible to influence the eigenvalues of the

same order for the open- and short-circuit case inde-

pendently of one another. Therefore, they were influenced

alternately.

The structure shown in Fig. 10 was analyzed by means

of a stepped waveguide using formulas given in [6]. The

location of the passbands was in very good agreement with

the required values.

In the same way as just described, low passes and high

passes were synthesized.

IV. CONCLUSION

A general principle for synthesi~ing nonuniform wave-

guides with desired properties was described. The method

is an iterative one. The application of the method was de-

scribed for one kind of nonuniform waveguide with

rectangular cross section and excited by a TEIO mode.

Simple examples have proved the feasibility of the method.

Some experience for a successful adaptation of the method

were given. In general, the method can be adapted to more

complicated problems, e.g., matching problems. A cor-

responding computer program is under test.
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Short Papers

Tabulation of Methods for the Numerical Solution of the

Hollow Waveguide Problem

FOOK LOY NG

Abstract—A comparison of methods for the numerical solution
of the hollow waveguide problem is presented in tabular form.
Another table lists waveguide shapes and their cutpff characteristics
that have been presented in the literature. These tables and the
bibliography affo;d ~ aid towards the selection of a method.

INTRODUCTION

Consider a uniform waveguide with ~erfectlv conducting walls.
For the propagation of mo~ochromatic- electro-magnetic w&es in-

side the waveguide, Maxwell’s equati?ns reduce to the two-dimen-
sional Helmhaltz equation [1, sect. 8.1].

All analyses of the hollow waveguide problem are attempts at
solving, exactly or approximately, the Helmholtz equation subject
to the imposed Dirichlet or Neumann boundary conditions for
E modes (TM) or H modes (TE), respectively [1, ch. 8].
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Many numerical methods have been proposed and used for the

solution of the waveguide problem. A commentary on and com-

parison of the methods together with relevant references are given in

this short paper. A table of the methods and their chief characteristics

are presented for convenient reference. Another table is given listing
the waveguide shapes that have been treated in the literature. ThB
is provided as a handy reference of shapes that can be used for the
testing of any numerical method. This short paper is a condensed
version of an earlier publication appearing in a journal with limited
circulation [2].

A general introduction to numerical techniques and a review of
finite difference and variational techniques for electromagnetic

problems are given by Wexler [3]. A review of some current numer-
ical methods for the solution of the waveguide problem is given by
Davies [4], and he establishes certain criteria as a basis for com-

parison of the various methods.

COMPARISON or METHODS

Waveguide shapes can be classified [5] into the three basic types
shown in Fig. 1.

In general, type 3 is the most troublesome computationally
because of the singular behavior of the field at the reentrant corners
[6, sect. 9.2]. Most of the methods either suffer from a slower
convergence rate or do not produce reliable results for th~ type of
shape.

The methods that have been used are compared in Table I.

Some criteria established by Davies [4] for the comparison of
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Typ 1.

Type 2.

D
Type 3.

Fig. 1. Classification of wavegnide shapes. Type l—convex. Type 2—
nonconvex, with smooth reentrant part(s). Type 3—nonconvex, with
reentrant corners.

TABLE I
COMPARISON OF METHODS FOR THE NUMERICAL SOLUTION OF THE Homow WAVEGUIDE PROBLEMS
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TABLE I (Conihwcd)
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method
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point:
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13 K
bytes

“1.5 Sees u-” ~ or Not alWayS valLd

per ev- better for Types 2 and
aluat ion (before 3 shapes. Se*
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when the
method is
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16 K 2.3 sees AS for SPM Protidces
bytes per ev- accurate results

aluation for Type 2 and 3
(th: ~, shapes, If

suitable repres-
for SPM) entations can be

f Ouna .

As for As for As for SPM, Errors may be
SPN SPM Generally large (1 O–2C%)

oscillates for types 2 and
for inc- 3 shapes.
reasing M
for types 2
and 3 shapes .

lest Dense, Versatile.
!uited to order
hapes 80-90 %%??’”’

‘or which for problem.
;imple :ccurac-
;r2nsf0r- Ies to
~at ion 1%
“unctions
:an be
‘ound

m
‘m
General Matrix Versatile, 25

order solution b~ kbytes

of 10-50 iteration of
re~jred transmission-line
to stare matrix equa+fions.
node
values.

2 minsl
10de
!cR4)f or
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,let e
:al cul -
Ltion
includ–

.ng the
‘ield)

.irl~
massive
s 200-5C0
torations
re required

For shapes requi%
ins complicated
mappmg funct Ions
or for higher
order moa&, the
lzrge number of
terms which have
to be taken into
account causes a
fall in accuracy.

See also Pyle
,~~ for trans-

verse resoaance
method aria
Collins & Daly

,J::a~q:g:~:

method .

Convergence
should be better
than a second
order differential
operator method
but the matrix
size will be
larger (Davies [4])

Method is equi.mdent
b transverse reso-
nance meL&o~ but
divifles the wavegui~e
intormqy ?ectangvlar
transmission l%nc
sections. Curved
bomiaries require
smaller meshes and
more storzge.
Zrrors .? 0.2-0.5’%.
typical.

S The properties of the matrix (column 4) and CPU time (column 7) quoted are those required to give results ac-
curate to 0.1 percent in general, unless otherwise stated: AH the methods, except for an earlier finite-difference
scheme, are capable of predicting the higher order modss m addition to the S.rst E and H modes.

methods are incorporated into the table. The storage requirements

quoted are for programs with 8-byte (64bit ) words.
There is, of course, no best method, but the variational, finite

element, finite difference, integral operator, null field, oonformal
transformation, and transmission-line matrix methods are of wide

applicability and can be used with all three types of shapes, with
mutable modifications where necessary for a type-3 shape.

Point matching methods are attractively ‘economic from the
points of view of programming effort and computer time, but they
often lose their effectiveness with complicated shapes [7], [8]. The
extended point matching method can produce accurate results,
however, for shapes that are strongly nonconvex [8].

The perturbation technique and other methods not listed in
Table I, including the network impedance analog [9], transverse
resonance [10], [11 ], and partial regions [12], [13] methods, are
not of general applicability and lend themselves to particular classes

of shapes only. Another technique, the Monte Carlo method, can

be used to solve the Hehnholtz equation [14], [15], but the method
requires excessive computing time in the simulation of a sufficient
number of random walks. Its attractive feature is the small com-

puter storage required.
Analog/hybrid computation techniques may be employed, al-

though these methods are still new [3]. A discussion of analog
techniques for partial differential equations is given by Fifer [16].

Mention should be made of the classical method of separation of
variables (an analytical method), which can be used when the
cross section of a waveguide coincides with coordinate surfaces of a
separable coordinate system [17]–[20].

No eompreheneive comparison of the methods on a single com-
puter is available at present, and dMerent machines have been used
in the various methods lieted in Table I. A useful comparison of the
characteristics of d@al computers can be found in [21].
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TABLE II

WAVEGUIDE SHAPES

Shape Reference

Dimensions
cutoff wavenumber
ka. of lowest

Method used in
Reference

order mode given in
reference

H mode E-mode

b . a/2a

Rectangle

u

b

Standard shape e.g.

[!l, [581

Separatmn of

Variables3.1416 7.0248

b= O.55a, C=O.225* Bulley and Davies

[5]

Variational

Raylelgh-Rit z
b

Vkuncat ed

9

ac

Square

4.215

b/a= O.25,

T = 0°(100)600.

Table of ka

values

Uptaln and Axleh
[531 . See also

Audeh & Fuller
[59] , Veselov &

Platonov fig,
Chopra & Durv9sula

[60], [6fj

Transverse

resonance
‘Trapezoid

d
a

Finite el~ent.&#

rounded
corner

Lq,asse and Tan Bladel
[62 1

No ka llsted.

Field plots given.

Bulley [Zj Variational

Rayleigh-Ritz“Roundedt’

m

b ‘“
Rectangle :

a
—

Valenz.uela Da

Sss also [62]

Vari.atlonal

Rayleigh-Ritz

a
Rectangle

D

,,
with Semi-

circular lb ;

sides d:

b/a = O to1.0.

H-mode. Graph

of ka values

4.819 Reid and Walsh
[651 . See also
Dav~es and Nagen-
thiram [47]

Flnite-

differenceL-shape

b

a12
a

a2
a

=3=
b.a~s a=d b=l 2.

2. 64

2.412 ‘12,’1416

2.2627

2.250 ‘12.134

2&:go2d .Lwj.,
Integral Operator

Beaubieq d Fumte-difference
Wexler 3 . PDSOR

VarlatlonalBulley ~~Dar.es @
Ra~leigh-R=t%

, Bates and Extended po,nt-

;i”% .
matehng

a

Rd~
b

Single

Ridge

b/a = 0.45;
d/b, s/a~=Oi)~(C1305)
0.95.
ka values.

Pyle (ld . ITransverse
resonance

Montgomery 16 4] . R itz–~al erkm

See also Beaubien

and Wexler [651

RMihe, l--+-+
Mnequal

m

bd . . . . . .
Eidge
de.pt-hs

P
a

Rectangle , 1
with trap-

M

c

ezoidal s b
ridges d_

Recently, attention has been focused on the challenging and

Many waveguide shapes are used in the literature as examples for
practical ridge waveguide (a type-3 shape).

Because of the profusion of shapes that have been used at one
solutions of the waveguide problem. These range from the simple time or another it is felt that Table II, which lists these shapes, will
trapezoid to the exotic club shape of Davies and Muilwyk [22]. prove useful for anyone wishing to check a new method. Also, the

TABLE OF WAVEGUIDE SHAPES
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TABLE II
(Continued)

Meinke

pq

b
guide ds

a

Vazziational
Rayle>gh-Ritz
Extended point-
mat thing

Conf ormal
transformation

b/a = 0.775, Meinke and Baier
s/a= OtOl. O
Graph of ka VaIUeS

[481.

b/a= ;.;5 (0.25)

d/a= O”t; 0.8.
Graph of ka values

Finite-element
a

Varied

n

d b
rectangle

-1-----
b/a . 4W,
&/a= O.26, ‘ea&’ ‘a ‘exle’
W/a. O.311/2.744 See also Silvester

2.9682 8.1181 kq.

F~nite-
difference PDSOR~-septate

rectangle
m

b

(Extended) pomt-
matchmg

?a=O.125,0.250, Audeh %?d Fuller
0.375

d/(a-b) =0 to 1.0 [59 1.Square
outer,

E

da
eccentric
circular
inner

Graphs of ka values I

n-sided
polygonal
outer, ca-

@

a
axial
circular r
inner.

Laura et al. [50]n. 4,5,6,7 and 8
r/a = O to 1.0
Lowest order E
mode. Graphs of
ka values

Con formal
transf ormat ion

a

Coaxial
rectangles

m

~b

b/a= O.8,2d/b = 0.6
s/a = O to 1.0

Graph of ka value:

Partial regions

4n/5 2xa/h Schellrunoff ~fl ,

SeC. 10.81. See

also Thomas ~4] .

Analytic

Solutlon
12jBlat –

triangle
A

h

a

T4.43 9.’96 Analytic

solution

.c~e,~off ~,],

sec. 10.81 and Morse

and Feshbach [67 ,

P.7561 .

Isosceles
right -

Q

a
angled
triangle

Regular pentagon
Regular hexagon
Regular hept .a?on
Regular octagon *

b/a = 0.9,
d/b = 1.0 to 1.15

Gx-aph OS ka values

La~a [68] Conformal
transformation
,, ,,,, ,,

,! ,! !, !,

Meinke and Baier [48.Hexagon Conformal
transformation

C/a = O to 5.0, Schlosser [69 ]
for several values
of cross-sectional

Transverse
resonance

Dimensions not
given, see figure
in reference

\ k= 4.087

Variational
Galerkin’s

St a

shaped

Separation of
variables

‘1 .8412 2.4048 Standard shape e.g.

[IJ.
Circle
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TABLE II
(Continued)

8

n = lT/2
5.0542 I 5.13>6

Sector
v

n =03n/2
1.4 3.3756

Separation of
variablesNg G],

see also Ng and
Bates [40] .

Null field method

Pyle and Angley [54d/a = O to 0.3

Truncated ,-”--~d E mode. Graph of
circle

m
a ka values .

Perturbation and
transverse
resonance

See also Slnnott
[70 ] and Schlossex

[691.

Separation of
variables

M6 [7] ,

Bates and ~$ [8],

Yee aai Audeh [42 ]b/a = 0.25, 0.5;
e/b = O to 3,0
Graphs of ka value:

b/a = 0.434,
c/d = 0.1 to 1.0

Cucular
outer,

@

a

eccentric c
circular
inner e

Abaka .md Baler
[521 . See also

Veselov and Semenov
[7 11, and Dwight

Con formal
transformation

IGraphs of ka value:

[721.

B u ien and Wexler

%
321 . See also

M“eln e and Baier
[$3 ~ , H. and

I sh~maru [5534
Arlett et al. @81

Finite-difference
PDSOR

Memke”et al. [+9] .
See also Meu&a and
Baler [4$}.

Con formal

transf or.nat~on

Circle,

@

b/a. Oto 1.0

with b Graph or ka values
central
cross a

Veselov and Gaydar

[731 .
Partial regions

T----i
a=l~, b= 6.875, Beaublen and Jexler Flnlte-difference
c-1.125, d=O.5 1%1 See also Hu PDOSR
e= 3.575, 6=22. Y Wang C>L I , Arlett

0.517 4.903 et al. &e] .$ii!il
a

‘11-septate
circle e

e d

Jti

~Graphs o? ka ialues “’se” ’581 ~

Ellipse

e

b

1 1

(x/a)n + (y/b)n = ‘1

b/a = 0.3 to 1.0, Larsen [58]9 [76 ]. Fmite-difference
Super-

elllpse n.2t0.w.

H-mode . Graph

of ka values.

Parabolic

o __

,Jstar,!

+

a

s hap e

see reference HOJ ~uch~ et al. ~0~

Zagrodz~l~kl ~~ .

Al,. [581 .

p=l+bcos 48,

b= Oto O.3 Laura [77 1 .

H mode. Graph of

ka values

Separation of
variables

m

Conf ormal

transformation

Club
shape

G

See reference

T

Davxes and hbnlwyk

bzl .
Finite-diffe~ence
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information contained in Table II is fairly comprehensive and is
worth presenting for its own sake.
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Numerical Solution of Surface Waveguide Modes Using

Transverse Field Components

C. G. WILLIAMS AND G. K. CAMBRELL

Afrstracf-The computation of surface wavegnide modes is fa-

cilitated by reducing the surface waveguide field problem to a

conventional eigenvalue problem that has no spurious solutions.

This is achieved by formulating the field problem in terms of trans-

verse field components and by using impedance boundary conditions

on an auxiliary boundary with a specified value of the exterior cutoff

wavennmber.

INTRODUCTION

In many field problems of practical interest, the region being con-

sidered is of infinite extent. A numerical method [1 ]–[3 ] which
combines integral and differential equation approaches is found to be

effective in increasing computational efficiency and accuracy. A
further application of the method is described here, namely, the

computation of surface waveguide modes. When formulated in terms

of transverse field components, this is a two-dimensional exterior
eigenvalue problem.

SELECTION OF FIELD COMPONENTS

A surface waveguide is essentially an inhomogeneous waveguide

without a closed boundary. The wave equation describing the

propagation in an inhomogeneous waveguide can be expressed in

terms of two field components, which are usually taken to be the

longitudinal components, E, and H.. (A field dependence of

exp [ j (ad — L%) ] is assumed throughout. ) However, as pointed out
by Gelder [4], this choice leads to a generalized eigenvalue problem

which, for a specified angular frequency o, is nonlinear in the eigen-
value D2. If the phase velocity u/~ is specified instead, a conventional

problem with eigenvalue 02 is obtained, but the solutions include

spurious nonsurface modes. This is because the exterior field of a
surface mode decays exponentially corresponding to an imaginary

exterior cutoff wavenumber k.~, that is, k,l~ = k# — P2 = C02pW0— &
is negative for a surface mode, whereas the specification of co/b is
insufficient to determine k~z. On the other hand, for a specified value
of k.~z, use of the transverse components [4], E. and EY, or H. and HU,
leads to a conventional eigenvalue problem with eigenvalue d which
has no spurious solutions.

PROBLEM FORMULATION

The cross section of a typical surface waveguide is shown in Fig. 1.
The rectangular dielectric rod (permittivity c) is enclosed within an

auxiliary boundary C which divides all space into an interior region R
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Fig. 1. Cross section of a rectangular dielectric rod surface wavegnide.

and a homogeneous exterior region RA. The transverse magnetic

field satisfies the differential equation [5]

“[:V’”(PH’)l-’V’X[:(V’XH’)I=‘6’-@2p’)H’‘1’
Assuming uniform permeability M, it is convenient to rearrange (1)
into the following component form:

which reduces to

– (v,’ + k.,2)Ht = O (4)

in the homogeneous exterior region R~. Although (1) is not self..

adjoint, it can be solved in R by such conventional techniques as the
method of moments [6]. For example, projecting both sides of (2)
and (3) onto the space spanned by a set of testing functions W, (.z,v)

yields

R

= & JM (e – co) W,Hz dA

R

R

(5)

(6)

E

where n is the outward normal. In addition, the transverse field com-
ponents must also satisfy (4) in the homogeneous exterior region RA.

Hence the trial values of the transverse field H,o and its outward
derivative dHtc/rk on the auxiliary boundary cannot be inde-
pendent. The compatibility condition which links them is found by

applying Green’s theorem to (4) to yield the integral equation

where k = ( —k~z ) Ilz, & (k I r — r~ I) k a modified Bessel function
[Green’s function for (4) ], 0 is the exterior angle in radians between
the tangents on each side of the point r on C, and it is understood that


