

Fig. 10. Characteristic longitudinal section F of the bandpass filter developed.

coupled waveguide filter. At this example, it turned out that it was not possible to influence the eigenvalues of the same order for the open- and short-circuit case independently of one another. Therefore, they were influenced alternately.

The structure shown in Fig. 10 was analyzed by means of a stepped waveguide using formulas given in [6]. The location of the passbands was in very good agreement with the required values.

In the same way as just described, low passes and high passes were synthesized.

IV. CONCLUSION

A general principle for synthesizing nonuniform waveguides with desired properties was described. The method is an iterative one. The application of the method was de-

scribed for one kind of nonuniform waveguide with rectangular cross section and excited by a TE_{10} mode. Simple examples have proved the feasibility of the method. Some experience for a successful adaptation of the method were given. In general, the method can be adapted to more complicated problems, e.g., matching problems. A corresponding computer program is under test.

ACKNOWLEDGMENT

The author wishes to thank H. Holl for valuable comments regarding the English translation.

REFERENCES

- [1] K. Grüner, "Ein Rechenverfahren zur Synthese von Stetig Inhomogenen Hohlleitern," Ph.D. dissertation, Tech. Univ. Munich, Munich, Germany, 1970.
- [2] H. H. Meinke, "Die Anwendung der Konformen Abbildung auf Wellenfelder," *Z. Angew. Phys.*, vol. 1, pp. 245-252, 1949.
- [3] R. Pilotty, "Die Anwendung der Konformen Abbildung auf die Feldgleichungen in Inhomogenen Rechteckröhren," *Z. Angew. Phys.*, vol. 1, pp. 441-448 and pp. 490-502, 1949.
- [4] G. Flachenecker, K. Lange, and H. H. Meinke, "Hohlleiterblenden allgemeineren Längsschnitts," *Nachrichtentech Z.*, vol. 2, pp. 70-76, 1967.
- [5] R. Zurmühl, *Praktische Mathematik für Ingenieure und Physiker*. Berlin, Germany: Springer, 1965.
- [6] Marcuvitz, *Waveguide Handbook*. New York: McGraw-Hill, 1951.

Short Papers

Tabulation of Methods for the Numerical Solution of the Hollow Waveguide Problem

FOOK LOY NG

Abstract—A comparison of methods for the numerical solution of the hollow waveguide problem is presented in tabular form. Another table lists waveguide shapes and their cutoff characteristics that have been presented in the literature. These tables and the bibliography afford an aid towards the selection of a method.

INTRODUCTION

Consider a uniform waveguide with perfectly conducting walls. For the propagation of monochromatic electromagnetic waves inside the waveguide, Maxwell's equations reduce to the two-dimensional Helmholtz equation [1, sect. 8.1].

All analyses of the hollow waveguide problem are attempts at solving, exactly or approximately, the Helmholtz equation subject to the imposed Dirichlet or Neumann boundary conditions for E modes (TM) or H modes (TE), respectively [1, ch. 8].

Manuscript received March 6, 1973; revised July 30, 1973.
The author was with the University of Canterbury, Christchurch, New Zealand. He is now with the IBM World Trade Corporation Malaysia, Jalan Barat, Petaling Jaya, Malaysia.

Many numerical methods have been proposed and used for the solution of the waveguide problem. A commentary on and comparison of the methods together with relevant references are given in this short paper. A table of the methods and their chief characteristics are presented for convenient reference. Another table is given listing the waveguide shapes that have been treated in the literature. This is provided as a handy reference of shapes that can be used for the testing of any numerical method. This short paper is a condensed version of an earlier publication appearing in a journal with limited circulation [2].

A general introduction to numerical techniques and a review of finite difference and variational techniques for electromagnetic problems are given by Wexler [3]. A review of some current numerical methods for the solution of the waveguide problem is given by Davies [4], and he establishes certain criteria as a basis for comparison of the various methods.

COMPARISON OF METHODS

Waveguide shapes can be classified [5] into the three basic types shown in Fig. 1.

In general, type 3 is the most troublesome computationally because of the singular behavior of the field at the reentrant corners [6, sect. 9.2]. Most of the methods either suffer from a slower convergence rate or do not produce reliable results for this type of shape.

The methods that have been used are compared in Table I. Some criteria established by Davies [4] for the comparison of

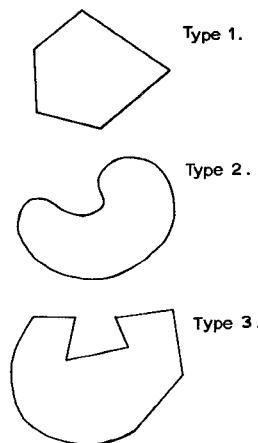


Fig. 1. Classification of waveguide shapes. Type 1—convex. Type 2—nonconvex, with smooth reentrant part(s). Type 3—nonconvex, with reentrant corners.

TABLE I
COMPARISON OF METHODS FOR THE NUMERICAL SOLUTION OF THE HOLLOW WAVEGUIDE PROBLEM^a

Method	Reference	Cross-sectional shapes (see Fig. 1)	Properties of Matrix/determinant, and orders needed for k accurate to 0.1% for appropriate shapes	Computer program/solution for wavenumber, k	Program Storage Requirements (8-byte words)	CPU time	Asymptotic convergence rate of the error	Remarks
Variational Rayleigh-Ritz	Bulley [23] Bulley and Davies [5]	General, except type 3 cannot be handled for E modes	Dense, Order 30-40	Versatile. Prog. EHPOL mentioned in reference. Standard eigenvalue matrix problem	70 Kbytes	30-70 secs (IBM 360/50)	Not well defined with polynomial order	Types 2 and 3 slower convergence. Good for curved type 1 shapes. Similar method by Thomas [24] and Valenzuela [25].
Finite-element	Silvester [26], [27]. See also [28], [29]	General	Dense, block diagonal. Order 30-100	Versatile. Progs. documented: Silvester [27], Konrad and Silvester [30]. Standard eigenvalue matrix problem	about 200 Kbytes	40 secs (IBM 7094)	M^{-2D} , M = matrix size D = order of polynomial	Types 2 and 3 slower convergence. $D = 1$ in the simple finite-element method (Silvester [31]).
Finite-difference (PDSOR)	Beaubien and Wexler [32]	General	Sparse, large matrix. Order 5000 - 20000	Versatile. Prog. documented: (Beaubien and Wexler [33]). Eigenvalue matrix problem. Estimate of k required to start iteration	140-220 Kbytes	8 mins/ mode (IBM 360/65)	h^{-1} to h^{-2} , h = mesh size	See also Pontoppidan [34] for an alternative algorithm. An earlier five-point finite-difference scheme (Davies and Mulwyk [22], also [5]) gives only the lowest order modes.
Integral operator formulation	Spielman and Harrington [36]. See also [37].	General	Dense, Order 10-30	Versatile, zeros of determinant give values of k , search routine required	Not given (probably around 100 K bytes)	Not given but stated as "substantial"	-	A moment method (Harrington [38]) with triangle functions is used. Field values close to waveguide wall are computed less accurately.
Null field method (NFM)	Bates [39], Ng and Bates [40]. See also [7].	General	Dense, Order 8-12	Versatile, zeros of determinant give values of k , search routine required	70 K bytes	25 secs per evaluation of determinant (10-15 required per mode)	about M^{-12} , M = order of determinant	A representation for the surface current density satisfying the requirements of the corner is needed for a type 3 shape. A representation by pulses gives the CPM.

TABLE I (Continued)

Straight-forward point-matching method (SPM)	Yee and Audeh [41], [42]; Bates [39];	Not universally applicable. See [43-46], [8]	Dense, order 8-12	Versatile, zeros of determinant give values of k , search routine required	13 K bytes	1.5 secs per evaluation of determinant (10-15 required per mode)	$M^{-1/2}$ or better (before levelling off) for appropriate shapes. Oscillates with increasing M when the method is not valid.	Not always valid for Types 2 and 3 shapes. See [47], [7], [8]
Extended point-matching method (EPM)	Ng [7], Bates and Ng [8].	Extends usefulness of SPM	As for SPM	Depends on detailed shape of C (the rest as for SPM)	16 K bytes	2.3 secs per evaluation (the rest as for SPM)	As for SPM	Produces accurate results for Type 2 and 3 shapes, if suitable representations can be found.
Complete point-matching method (CPM)	Bates [39], Ng [7].	General	As for SPM	As for SPM	As for SPM	As for SPM	As for SPM, Generally oscillates for increasing M for types 2 and 3 shapes.	Errors may be large (10-20%) for types 2 and 3 shapes.
Conformal transformation	Meinke & Baier [48], Meinke et al. [49]. See also [50-52].	Best suited to shapes for which simple transformation functions can be found	Dense, order 80-90 for accuracies to 1%	Versatile. Eigenvalue matrix problem.	-	12 mins/mode (TR4) for a complete calculation (including the field)	-	For shapes requiring complicated mapping functions or for higher order modes, the large number of terms which have to be taken into account causes a fall in accuracy.
Perturbation (geometrical approximation)	Uptain & Audeh [53], Pyle and Angley [54], Hu and Ishimaru [55]. See also [56].	Limited shapes	Dense	Each waveguide becomes a separate problem. See individual references.	-	-	-	See also Pyle [51] for transverse resonance method and Collins & Daly [52] and Vesselov [53] for partial regions method.
Coupled first order operators	Harrington [58] sec. 8.5] (see also Davies [4])	General	Dense	Versatile, zeros of determinant give values of k	-	-	-	Convergence should be better than a second order differential operator method but the matrix size will be larger (Davies [4])
Transmission-line matrix method	Johns [57]	General	Matrix order of 10-50 required to store node values.	Versatile, solution by iteration of transmission-line matrix equations.	25 kbytes	Fairly excessive as 200-500 iterations are required	-	Method is equivalent to transverse resonance method but divides the waveguide into many rectangular transmission line sections. Curved boundaries require smaller meshes and more storage. Errors of 0.2-0.5% typical.

^a The properties of the matrix (column 4) and CPU time (column 7) quoted are those required to give results accurate to 0.1 percent in general, unless otherwise stated. All the methods, except for an earlier finite-difference scheme, are capable of predicting the higher order modes in addition to the first E and H modes.

methods are incorporated into the table. The storage requirements quoted are for programs with 8-byte (64-bit) words.

There is, of course, no best method, but the variational, finite element, finite difference, integral operator, null field, conformal transformation, and transmission-line matrix methods are of wide applicability and can be used with all three types of shapes, with suitable modifications where necessary for a type-3 shape.

Point matching methods are attractively economic from the points of view of programming effort and computer time, but they often lose their effectiveness with complicated shapes [7], [8]. The extended point matching method can produce accurate results, however, for shapes that are strongly nonconvex [8].

The perturbation technique and other methods not listed in Table I, including the network impedance analog [9], transverse resonance [10], [11], and partial regions [12], [13] methods, are not of general applicability and lend themselves to particular classes

of shapes only. Another technique, the Monte Carlo method, can be used to solve the Helmholtz equation [14], [15], but the method requires excessive computing time in the simulation of a sufficient number of random walks. Its attractive feature is the small computer storage required.

Analog/hybrid computation techniques may be employed, although these methods are still new [3]. A discussion of analog techniques for partial differential equations is given by Fifer [16].

Mention should be made of the classical method of separation of variables (an analytical method), which can be used when the cross section of a waveguide coincides with coordinate surfaces of a separable coordinate system [17]-[20].

No comprehensive comparison of the methods on a single computer is available at present, and different machines have been used in the various methods listed in Table I. A useful comparison of the characteristics of digital computers can be found in [21].

TABLE II
WAVEGUIDE SHAPES

Shape	Dimensions		Reference	Method used in Reference
	cutoff wavenumber ka, of lowest order mode given in reference	H mode		
Rectangle	$b = a/2$		Standard shape e.g. [1], [58]	Separation of Variables
	3.1416	7.0248		
Truncated Square	$b=0.55a, c=0.225a$		Bulley and Davies [5]	Variational Rayleigh-Ritz
	4.215			
Trapezoid	$b/a=0.25, \varphi = 0^\circ(10^\circ)60^\circ.$ Table of ka values		Uptain and Audeh [53]. See also Audeh & Fuller [59], Veselov & Platonov [1], Chopra & Durvasula [60], [61]	Transverse resonance
Square with rounded corner	$a/a = 0$ to $1/2$ Graph of ka values		Lagusse and Van Bladel [62]	Finite element
"Rounded" Rectangle	No ka listed. Field plots given.		Bulley [23]	Variational Rayleigh-Ritz
Rectangle with Semi-circular sides	$b/a = 0$ to 1.0 . H-mode. Graph of ka values		Valenzuela [24] See also [62]	Variational Rayleigh-Ritz
L-shape	4.819		Reid and Walsh [63]. See also Davies and Nagnethiram [47]	Finite- difference
Single Ridge	$b/a=s/a=d/b=1/2.$ 2.2566 12.164 2.412 12.1416 2.2627 2.250 12.134		Spielman and Harrington [36]. Beaubien and Wexler [62]. Bulley and Davies [5]. Ng [7], Bates and Ng [8]	Integral Operator Finite-difference Variational Rayleigh-Ritz Extended point- matching
	$b/a = 0.45; d/b, s/a = 0.05(0.05)$ 0.95. Table of ka values.		Pyle [11].	Transverse resonance
	$a = 0.5, b = 0.4, s = 0.1, c = 0.055, e = 0.02, 0.13, 0.17; d/b = 0.225$ to 0.325 . H-mode. Graph of ka values.		Montgomery [64]. See also Beaubien and Wexler [65]	Ritz-Galerkin
	$b/a = 0.75, s/a = d/b = 0.15, c/a = 0.2$		Meinke et al. [49].	Conformal transformation
	2.53 7.61			
Rectangular with trapezoidal ridges				

TABLE OF WAVEGUIDE SHAPES

Many waveguide shapes are used in the literature as examples for solutions of the waveguide problem. These range from the simple trapezoid to the exotic club shape of Davies and Muilwyk [22].

Recently, attention has been focused on the challenging and practical ridge waveguide (a type-3 shape).

Because of the profusion of shapes that have been used at one time or another it is felt that Table II, which lists these shapes, will prove useful for anyone wishing to check a new method. Also, the

TABLE II
(Continued)

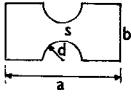
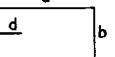
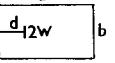
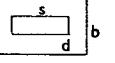
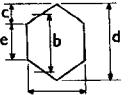
Meinke guide		a/b=1.29, d/b=0.3	Bulley and Davies [5] Ng [7], Bates and Ng [8]	Variational Rayleigh-Ritz Extended point- matching	
		2.267			
		2.268			
		b/a = 0.775, s/a = 0 to 1.0 Graph of k_a values	Meinke and Baier [48].	Conformal transformation	
Vaned rectangle		b/a = 0.25 (0.25) 1.0, d/a = 0 to 0.8. Graph of k_a values	Silvester [26]	Finite-element	
T-septate rectangle		b/a = 4W, d/a = 0.26, W/a = 0.311/2.744 2.9682 8.1181	Beaubien and Wexler [32]. See also Silvester [26].	Finite- difference PDSOR	
Square outer, eccentric circular inner		2a = 0.125, 0.250, 0.375 a/(a-b) = 0 to 1.0 Graphs of k_a values	Audeh and Fuller [59].	(Extended) point- matching	
n-sided polygonal outer, co- axial circular inner.		n = 4, 5, 6, 7 and 8 r/a = 0 to 1.0 Lowest order E mode. Graphs of k_a values	Laura et al. [50]	Conformal transformation	
Coaxial rectangles		b/a = 0.8, 2d/b = 0.6 s/a = 0 to 1.0 Graph of k_a values	Gruner [66].	Partial regions	
Equilater- al triangle		$4\pi/3$	$2\pi a/h$	Schelkunoff [17], sec. 10.8]. See also Thomas [24].	Analytic solution
Isosceles right- angled triangle		4.43	9.96	Schelkunoff [17], sec. 10.8] and Morse and Feshbach [67, p.756].	Analytic solution
Regular pentagon		2.285	Laura [68]	Conformal transformation	
Regular hexagon		2.317	"	"	
Regular heptagon		2.339	"	"	
Regular octagon		2.355	"	"	
Hexagon		b/a = 0.9, d/b = 1.0 to 1.15 Graph of k_a values	Meinke and Baier [48]	Conformal transformation	
		c/a = 0 to 5.0, for several values of cross-sectional area. Graph of k_a values.	Schlosser [69]	Transverse resonance	
Star shaped		Dimensions not given, see figure in reference	Thomas [24]	Variational Galerkin's	
		k = 4.087			
Circle		1.8412	2.4048	Standard shape e.g. [1].	Separation of variables

TABLE II
(Continued)

Sector		$\eta = \pi/2$ $3.0542 \quad 5.1356$ $\eta = 3\pi/2$ $1.4012 \quad 3.3756$	Ng [6], see also Ng and Bates [40].	Separation of variables
"Rounded" sector		$\eta = 3\pi/2$, $b/a = 0.35$ 3.2015	Bates and Ng [8].	Null field method
Truncated circle		$d/a = 0$ to 0.3 E mode. Graph of ka values.	Pyle and Angley [54]. See also Sinnott [70] and Schlosser [69].	Perturbation and transverse resonance
Segment		$\eta = \pi/2$, $b/a = 0.2$ 5.2218 $\eta = 3\pi/2$, $b/a = 0.3$ 4.5457	Ng [7], Bates and Ng [8].	Separation of variables
Circular outer, eccentric circular inner		$b/a = 0.25, 0.5$ $e/b = 0$ to 3.0 Graphs of ka values	Yee and Audeh [42].	(Extended) point-matching
		$b/a = 0.434$, $c/d = 0.1$ to 1.0 Graphs of ka values	Abaka and Baier [52]. See also Veselov and Semenov [71], and Dwight [72].	Conformal transformation
Lunar shape		$a = 13$, $b = 7.435$, $c = 1.0$, $d = 1.43$ $0.990 \quad 4.605$	Beaubien and Wexler [32]. See also Meinke and Baier [48], Hu and Ishimaru [55], Arlett et al. [28].	Finite-difference PDSOR
Inverted lunar		$a = 34$, $d = 3.74$, $e = 38.9$ 0.770	Meinke et al. [49]. See also Meinke and Baier [48].	Conformal transformation
Circle, with central cross		$b/a = 0$ to 1.0 Graph of ka values	Veselov and Gaydar [73].	Partial regions
T-septate circle		$a = 13$, $b = 6.875$, $c = 1.125$, $d = 0.5$, $e = 3.375$, $\theta = 22.5^\circ$ $0.517 \quad 4.903$	Beaubien and Wexler [32]. See also Hu Wang [74], Arlett et al. [28].	Finite-difference PDSOR
Ellipse		$(x/a)^2 + (y/b)^2 = 1$, $e^2 = 1 - b^2/a^2$. $e = 0.0$ to 1.0 . E and H modes. Graphs of ka values	Krestzschmar [5]. See also Rayevskiy and Smorgonskiy [75], Davies and Krestzschmar [56], Larsen [58].	Separation of variables
Super-ellipse		$(x/a)^n + (y/b)^n = 1$ $b/a = 0.3$ to 1.0 , $n = 2$ to ∞ . H-mode. Graph of ka values.	Larsen [58], [76].	Finite-difference
Parabolic		see reference	Horiuchi et al. [20] and Zagrodzinski [19]. Also [58].	Separation of variables
"Star" shape		$\rho = 1 + b \cos 4\theta$, $b = 0$ to 0.3 H mode. Graph of ka values	Laura [77].	Conformal transformation
Club shape		See reference	Davies and Muilwyk [22].	Finite-difference

information contained in Table II is fairly comprehensive and is worth presenting for its own sake.

ACKNOWLEDGMENT

The author wishes to thank Dr. R. H. T. Bates of the University of Canterbury, Christchurch, New Zealand, for helpful discussions during the course of this work.

REFERENCES

- [1] R. F. Harrington, *Time-Harmonic Electromagnetic Fields*. New York: McGraw-Hill, 1961.
- [2] F. L. Ng, "Numerical solution of the hollow waveguide problem," *Canterbury Eng. J. (New Zealand)*, pp. 17-24, Nov. 1972.
- [3] A. Wexler, "Computation of electromagnetic fields," *IEEE Trans. Microwave Theory Tech. (Special Issue on Computer-Oriented Microwave Practices)*, vol. MTT-17, pp. 416-439, Aug. 1969.
- [4] J. B. Davies, "A review of methods for numerical solution of the hollow waveguide problem," *Proc. Inst. Elec. Eng.*, vol. 119, pp. 33-37, Jan. 1972.
- [5] R. M. Bulley and J. B. Davies, "Computation of approximate polynomial solutions to TE modes in an arbitrarily shaped waveguide," *IEEE Trans. Microwave Theory Tech. (Special Issue on Computer-Oriented Microwave Practices)*, vol. MTT-17, pp. 440-446, Aug. 1969.
- [6] D. S. Jones, *The Theory of Electromagnetism*. New York: Pergamon, 1964.
- [7] F. L. Ng, "Contributions to guided wave theory," Ph.D. dissertation, Dept. Elec. Eng., Univ. Canterbury, Christchurch, New Zealand; also, Res. Rep., vol. 8, May 1972.
- [8] R. H. T. Bates and F. L. Ng, "Point matching computation of transverse resonances," *Int. J. Num. Meth. Eng.*, vol. 6, pp. 155-168, 1973.
- [9] J. Vine, "Impedance networks," in *Field Analysis: Experimental and Computational Methods*, D. Vitkovitch, Ed. Princeton, N. J.: Van Nostrand, 1966.
- [10] S. B. Cohn, "Properties of ridge wave guide," *Proc. IRE*, vol. 35, pp. 783-788, Aug. 1947.
- [11] J. R. Pyle, "The cutoff wavelength of the TE₁₀ mode in ridged rectangular waveguide of any aspect ratio," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-14, pp. 175-183, Apr. 1966.
- [12] J. H. Collins and P. Daly, "Orthogonal mode theory of single ridge waveguides," *J. Electron. Contr.*, vol. 17, pp. 121-129, 1964.
- [13] G. I. Veselov and N. I. Platonov, "Analysis of a corner waveguide," *Radio Eng.*, vol. 24, pp. 124-126, 1969.
- [14] W. Wasow, "Random walks and the eigenvalues of elliptic differential equations," *J. Res. Nat. Bur. Stand.*, vol. 46, pp. 65-73, Jan. 1951.
- [15] T. R. Rowbotham and P. B. Johns, "Waveguide analysis by random walks," *Electron. Lett.*, vol. 8, pp. 251-253, May 1972.
- [16] S. Fifer, *Analogue Computation*, vol. III. New York: McGraw-Hill, 1960.
- [17] S. A. Schelkunoff, *Electromagnetic Waves*. New York: Van Nostrand, 1943.
- [18] J. G. Kretzschmar, "Wave propagation in hollow conducting elliptical waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-18, pp. 547-554, Sept. 1970.
- [19] J. Zagrodzinski, "Electromagnetic fields in parabolic waveguides and resonators," in *Proc. 3rd Colloquium Microwave Communication* (Akademiai Kiado, Budapest), 1968, pp. 457-465.
- [20] K. Horiuchi, J. Nakamura, A. Nago, K. Inada, and T. Hirai, "Parabolic cylinder waveguides," *Electron. Commun. Japan*, vol. 51-B, pp. 69-77, 1968.
- [21] "Characteristics of general purpose digital computers," in *Computers and Automation*, 15th annu. ed. directory, vol. 18, 1969; also, vol. 19, 1970.
- [22] J. B. Davies and C. A. Muilwyk, "Numerical solution of uniform hollow waveguides with boundaries of arbitrary shape," *Proc. Inst. Elec. Eng. (London)*, vol. 113, pp. 277-284, Feb. 1966.
- [23] R. M. Bulley, "Analysis of the arbitrarily shaped waveguide by polynomial approximation," *IEEE Trans. Microwave Theory Tech. (1970 Symposium Issue)*, vol. MTT-18, pp. 1022-1028, Dec. 1970.
- [24] D. T. Thomas, "Functional approximations for solving boundary value problems by computer," *IEEE Trans. Microwave Theory Tech. (Special Issue on Computer-Oriented Microwave Practices)*, vol. MTT-17, pp. 447-454, Aug. 1969.
- [25] G. R. Valenzuela, "The cutoff wavelengths of composite waveguides," *IRE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-9, pp. 363-364, July 1961.
- [26] P. Silvester, "A general high-order finite-element waveguide analysis program," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 204-210, Apr. 1969.
- [27] —, "High-order finite-element waveguide analysis," *IEEE Trans. Microwave Theory Tech. (Special Issue on Computer-Oriented Microwave Practices) (Computer Program Descriptions)*, vol. MTT-17, p. 651, Aug. 1969.
- [28] P. L. Arlett, A. K. Bahrani, and P. C. Zienkiewicz, "Application of finite-elements to the solution of Helmholtz's equation," *Proc. Inst. Elec. Eng. (London)*, vol. 115, pp. 1762-1766, Dec. 1968.
- [29] S. Ahmed and P. Daly, "Waveguide solution by the finite-element method," *Radio Electron. Eng.*, vol. 38, pp. 217-223, Oct. 1969.
- [30] A. Konrad and P. Silvester, "Scalar finite-element program package for two-dimensional field problems," *IEEE Trans. Microwave Theory Tech. (1971 Symposium Issue) (Computer Program Descriptions)*, vol. MTT-19, pp. 952-954, Dec. 1971.
- [31] P. Silvester, "Finite-element solutions of homogeneous waveguide problems," *Alta Freq. (Numero Speciale)*, vol. 38, pp. 313-317, May 1969.
- [32] M. J. Beaubien and A. Wexler, "Unequal-arm finite-difference operators in the positive-definite successive overrelaxation (PDSOR) algorithm," *IEEE Trans. Microwave Theory Tech. (1970 Symposium Issue)*, vol. MTT-18, pp. 1132-1149, Dec. 1970.
- [33] —, "Higher waveguide modes by positive definite SOR," *IEEE Trans. Microwave Theory Tech. (Computer Program Descriptions)*, vol. MTT-19, pp. 839-840, Oct. 1971.
- [34] K. Pontoppidan, "Numerical solution of waveguide problems using finite difference methods," in *Proc. European Microwave Conf.*, IEE Conf. Pub. 58, 1969, pp. 99-102.
- [35] C. W. Steele, "Numerical computation of electric and magnetic fields in a uniform waveguide of arbitrary cross section," *J. Comput. Phys.*, vol. 3, pp. 148-153, 1968.
- [36] B. E. Spielman and R. F. Harrington, "Waveguides of arbitrary cross section by solution of a nonlinear integral eigenvalue equation," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 578-585, Sept. 1972.
- [37] M. Hashimoto and K. Fujisawa, "Considerations on matrix methods and estimation of their errors," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-18, pp. 352-359, July 1970.
- [38] R. F. Harrington, *Field Computation by Moment Methods*. New York: Macmillan, 1968.
- [39] R. H. T. Bates, "The theory of the point-matching method for perfectly conducting waveguides and transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 294-301, June 1969.
- [40] F. L. Ng and R. H. T. Bates, "Null-field method for waveguides of arbitrary cross section," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 658-661, Oct. 1972.
- [41] H. Y. Yee and N. F. Audeh, "Uniform waveguides with arbitrary cross-section considered by the point matching method," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 847-851, Nov. 1965.
- [42] —, "Cutoff frequencies of eccentric waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-14, pp. 487-493, Oct. 1966.
- [43] J. A. Fuller and N. F. Audeh, "The point-matching solution of uniform nonsymmetric waveguides," *IEEE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-17, pp. 114-115, Feb. 1969.
- [44] R. F. Harrington, "On the calculation of scattering by conducting cylinders," *IEEE Trans. Antennas Propagat. (Corresp.)*, vol. AP-13, pp. 812-813, Sept. 1965.
- [45] P. A. Laura, "Application of the point-matching method in waveguide problems," *IEEE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-14, p. 251, May 1966.
- [46] R. H. T. Bates, "The point-matching method for interior and exterior two-dimensional boundary value problems," *IEEE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-15, pp. 185-187, Mar. 1967.
- [47] J. B. Davies and P. Nagenthiran, "Irregular fields, nonconvex shapes and the point matching method for hollow waveguides," *Electron. Lett.*, vol. 7, pp. 401-404, July 1971.
- [48] H. H. Meinke and W. Baier, "The characteristics of waveguides with general cross-section," *Nachrichtentech. Z. Commun. J.*, vol. 7, pp. 1-8, June 1968.
- [49] H. H. Meinke, K. P. Lange, and J. F. Ruger, "TE- and TM-waves in waveguides of very general cross section," *Proc. IEEE*, vol. 51, pp. 1436-1443, Nov. 1963.
- [50] P. A. Laura, E. Romanelli, and M. H. Maurizi, "On the analysis of waveguides of doubly-connected cross-section by the method of conformal mapping," *J. Sound Vib.*, vol. 20, pp. 27-38, 1972.
- [51] P. A. Laura, "A simple method for the determination of cutoff frequencies of waveguides with arbitrary cross sections," *Proc. IEEE (A Special Joint Issue on Optical Electronics with Applied Optics) (Lett.)*, vol. 54, pp. 1495-1497, Oct. 1966.
- [52] E. Abaka and W. Baier, "TE and TM modes in transmission lines with circular outer conductor and eccentric circular inner conductor," *Electron. Lett.*, vol. 5, pp. 251-255, May 1969.
- [53] S. T. Uptain and N. F. Audeh, "Transverse resonance solution of uniform trapezoidal waveguides," *IEEE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-14, p. 158, Mar. 1966.
- [54] J. R. Pyle and R. J. Angley, "Cutoff wavelengths of waveguides with unusual cross sections," *IEEE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-12, pp. 556-557, Sept. 1964.
- [55] A. Y. Hu and A. Ishimaru, "The dominant cutoff wavelength of a lunar line," *IRE Trans. Microwave Theory Tech.*, vol. MTT-9, pp. 552-556, Nov. 1961.
- [56] J. B. Davies and J. G. Kretzschmar, "Analysis of hollow elliptical waveguides by polygon approximation," *Proc. Inst. Elec. Eng. (London)*, vol. 119, pp. 519-522, May 1972.
- [57] P. B. Johns, "Application of the transmission-line-matrix method to homogeneous waveguides of arbitrary cross section," *Proc. Inst. Elec. Eng. (London)*, vol. 119, pp. 1086-1091, Aug. 1972.
- [58] T. Larsen, "On the relation between modes in rectangular, elliptical, and parabolic waveguides and a mode-classifying system," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 379-384, June 1972.
- [59] N. F. Audeh and J. A. Fuller, "A study of uniform waveguides of arbitrary cross sections by the point matching method," Univ. Alabama Res. Inst., Res. Rep. 56, May 1968.
- [60] I. Chopra and S. Durvasula, "Vibration of simply supported trapezoidal plates. Part I. Symmetric trapezoids," *J. Sound Vib.*, vol. 19, pp. 379-392, 1971.
- [61] —, "Vibration of simply supported trapezoidal plates. Part II. Unsymmetric trapezoids," *J. Sound Vib.*, vol. 20, pp. 125-134, 1972.
- [62] P. Lagasse and J. Van Bladel, "Square and rectangular waveguides with rounded corners," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 331-337, May 1972.
- [63] J. K. Reid and J. E. Walsh, "An elliptic eigenvalue problem for a reentrant region," *J. Soc. Ind. Appl. Math.*, vol. 13, pp. 837-850, 1965.
- [64] J. P. Montgomery, "On the complete eigenvalue solution of ridged waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 547-555, June 1971.
- [65] M. H. Beaubien and A. Wexler, "An accurate finite-difference method for higher order waveguide modes," *IEEE Trans. Microwave Theory Tech. (1968 Symposium Issue)*, vol. MTT-16, pp. 1007-1017, Dec. 1968.
- [66] L. Gruner, "Higher order modes in rectangular coaxial waveguides," *IEEE Trans. Microwave Theory Tech. (Corresp.)*, vol. MTT-15, pp. 483-485, Aug. 1967.
- [67] P. M. Morse and H. Feshbach, *Methods of Theoretical Physics*. New York: McGraw-Hill, 1953.
- [68] P. A. Laura, "Calculation of eigenvalues for uniform fluid waveguides with complicated cross sections," *J. Acoust. Soc. Amer.*, vol. 42, pp. 21-26, 1967.
- [69] W. Schlosser, "Determination of normal modes of waveguide with arbitrary boundary," in *Proc. 3rd Colloquium Microwave Communication* (Akademiai Kiado, Budapest), 1968, pp. 449-455.
- [70] D. H. Sinnott, "The application of finite difference techniques to electromagnetic problems," *Elec. Eng. Trans. (Australia)*, vol. EE-6, pp. 6-11, Mar. 1970.
- [71] G. I. Veselov and S. G. Semenov, "Theory of circular waveguide with eccentrically placed metallic conductor," *Radio Eng. Electron. Phys.*, vol. 15, pp. 687-690, Apr. 1970.
- [72] H. B. Dwight, "Tables of roots for natural frequencies in coaxial cavities," *J. Math. Phys.*, vol. 27, pp. 84-89, 1948.

- [73] G. I. Veselov and V. I. Gaydar, "Analysis of a circular waveguide with an internal cross-shaped conductor," *Radio Eng.*, vol. 25, pp. 147-149, 1970.
- [74] A. Y. Hu Wang, "Dominant cutoff wavelength of a T-septate lunar line," *Proc. Inst. Elec. Eng. (London)*, vol. 111, pp. 1262-1266, July 1964.
- [75] S. B. Rayevskiy and V. Ya. Smorgonskiy, "Method of computation of critical frequencies of an elliptical waveguide," *Radio Eng. Electron. Phys.*, vol. 15, pp. 1702-1705, 1970.
- [76] T. Larsen, "Superelliptic broadband transition between rectangular and circular waveguides," in *Proc. European Microwave Conf.*, IEE Conf. Pub. 58, 1969, pp. 277-280.
- [77] P. A. Laura, "On the determination of the natural frequency of a star-shaped membrane," *J. Royal Aeronaut. Soc.*, vol. 68, pp. 274-275, Apr. 1964.

Numerical Solution of Surface Waveguide Modes Using Transverse Field Components

C. G. WILLIAMS AND G. K. CAMBRELL

Abstract—The computation of surface waveguide modes is facilitated by reducing the surface waveguide field problem to a conventional eigenvalue problem that has no spurious solutions. This is achieved by formulating the field problem in terms of transverse field components and by using impedance boundary conditions on an auxiliary boundary with a specified value of the exterior cutoff wavenumber.

INTRODUCTION

In many field problems of practical interest, the region being considered is of infinite extent. A numerical method [1]-[3] which combines integral and differential equation approaches is found to be effective in increasing computational efficiency and accuracy. A further application of the method is described here, namely, the computation of surface waveguide modes. When formulated in terms of transverse field components, this is a two-dimensional exterior eigenvalue problem.

SELECTION OF FIELD COMPONENTS

A surface waveguide is essentially an inhomogeneous waveguide without a closed boundary. The wave equation describing the propagation in an inhomogeneous waveguide can be expressed in terms of two field components, which are usually taken to be the longitudinal components, E_z and H_z . (A field dependence of $\exp[j(\omega t - \beta z)]$ is assumed throughout.) However, as pointed out by Gelder [4], this choice leads to a generalized eigenvalue problem which, for a specified angular frequency ω , is nonlinear in the eigenvalue β^2 . If the phase velocity ω/β is specified instead, a conventional problem with eigenvalue ω^2 is obtained, but the solutions include spurious nonsurface modes. This is because the exterior field of a surface mode decays exponentially corresponding to an imaginary exterior cutoff wavenumber k_A , that is, $k_A^2 = k_0^2 - \beta^2 = \omega^2\mu_0\epsilon_0 - \beta^2$ is negative for a surface mode, whereas the specification of ω/β is insufficient to determine k_A^2 . On the other hand, for a specified value of k_A^2 , use of the transverse components [4], E_x and E_y , or H_x and H_y , leads to a conventional eigenvalue problem with eigenvalue ω^2 which has no spurious solutions.

PROBLEM FORMULATION

The cross section of a typical surface waveguide is shown in Fig. 1. The rectangular dielectric rod (permittivity ϵ) is enclosed within an auxiliary boundary C which divides all space into an interior region R

Manuscript received July 9, 1973; revised December 11, 1973. This work was supported by the Australian Radio Research Board.
The authors are with the Department of Electrical Engineering, Monash University, Clayton, Vic., Australia.

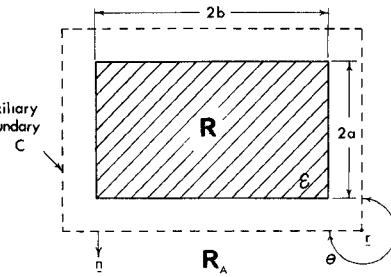


Fig. 1. Cross section of a rectangular dielectric rod surface waveguide.

and a homogeneous exterior region R_A . The transverse magnetic field satisfies the differential equation [5]

$$\nabla_t \left[\frac{1}{\mu} \nabla_t \cdot (\mu H_t) \right] - \epsilon \nabla_t \times \left[\frac{1}{\epsilon} (\nabla_t \times H_t) \right] = (\beta^2 - \omega^2 \mu \epsilon) H_t. \quad (1)$$

Assuming uniform permeability μ_0 , it is convenient to rearrange (1) into the following component form:

$$-(\nabla_t^2 + k_A^2) H_x - \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial y} \left(\frac{\partial H_x}{\partial y} - \frac{\partial H_y}{\partial x} \right) = \omega^2 \mu_0 (\epsilon - \epsilon_0) H_x \quad (2)$$

$$-(\nabla_t^2 + k_A^2) H_y - \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial x} \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right) = \omega^2 \mu_0 (\epsilon - \epsilon_0) H_y \quad (3)$$

which reduces to

$$-(\nabla_t^2 + k_A^2) H_t = 0 \quad (4)$$

in the homogeneous exterior region R_A . Although (1) is not self-adjoint, it can be solved in R by such conventional techniques as the method of moments [6]. For example, projecting both sides of (2) and (3) onto the space spanned by a set of testing functions $W_i(x, y)$ yields

$$\begin{aligned} & \iint_R \left\{ \frac{\partial W_i}{\partial x} \frac{\partial H_x}{\partial x} + \frac{\partial W_i}{\partial y} \frac{\partial H_x}{\partial y} - k_A^2 W_i H_x \right. \\ & \quad \left. - \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial y} W_i \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right) \right\} dA - \oint_C W_i \frac{\partial H_x}{\partial n} ds \\ & = \omega^2 \iint_R \mu_0 (\epsilon - \epsilon_0) W_i H_x dA \end{aligned} \quad (5)$$

$$\begin{aligned} & \iint_R \left\{ \frac{\partial W_i}{\partial x} \frac{\partial H_y}{\partial x} + \frac{\partial W_i}{\partial y} \frac{\partial H_y}{\partial y} - k_A^2 W_i H_y \right. \\ & \quad \left. - \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial x} W_i \left(\frac{\partial H_x}{\partial y} - \frac{\partial H_y}{\partial x} \right) \right\} dA - \oint_C W_i \frac{\partial H_y}{\partial n} ds \\ & = \omega^2 \iint_R \mu_0 (\epsilon - \epsilon_0) W_i H_y dA \end{aligned} \quad (6)$$

where n is the outward normal. In addition, the transverse field components must also satisfy (4) in the homogeneous exterior region R_A . Hence the trial values of the transverse field H_{iC} and its outward derivative $\partial H_{iC}/\partial n$ on the auxiliary boundary cannot be independent. The compatibility condition which links them is found by applying Green's theorem to (4) to yield the integral equation

$$H_{iC}(r) = \frac{1}{\theta} \oint_C \left\{ H_{iC}(r_0) \frac{\partial}{\partial n} K_0(k | r - r_0 |) \right. \\ \left. - K_0(k | r - r_0 |) \frac{\partial H_{iC}}{\partial n}(r_0) \right\} ds_0 \quad (7)$$

where $k = (-k_A^2)^{1/2}$, $K_0(k | r - r_0 |)$ is a modified Bessel function [Green's function for (4)], θ is the exterior angle in radians between the tangents on each side of the point r on C , and it is understood that